Unsupervised Anomaly Detection
Claudi Ruiz Camps

Machine Learning Specialist
claudi.ruiz.camps@nl.abnamro.com
Business Goal

Detect anomalies at their earliest stage and avoid bigger problems in advance.
An anomaly is a data point which is significantly different from the remaining data.
Identifying Anomalies

Given a Raw Dataset that:

- Increases around 10 million data-points every day
- Changes its patterns over time
- Contains a mixture of text, categorical and numerical data types
Artificial Intelligence

Machine Learning

Deep Learning
Why Deep Learning

Deep learning models can

- Learn patterns in significantly large amounts of data
- Enable you to solve problems even if you are not an expert in the domain
- Approximate (theoretically) any function
Supervised vs Unsupervised Learning

Supervised

We do have labels

Unsupervised

We do not have labels (in our case we do not have explicit examples of anomalies)
Deep Learning

input layer hidden layer 1 hidden layer 2 hidden layer 3

output layer
Autoencoders

- **Input**
 - Sample
- **Hidden Layers**
 - Code
- **Output**
 - Reconstructed Sample

- **Encoder**
- **Decoder**
Autoencoders

Input \(Y \) → Hidden Layers \(z \) → Output \(\hat{Y} \)

Sample \(Y \)

Encoder

Decoder

MSE

Reconstructed Sample
Probabilistic Autoencoder

The Autoencoder scores each sample based on its reconstruction error:

\[\text{↑ reconstruction error} \implies \text{↑ probability to be an anomaly} \]
\[\text{↓ reconstruction error} \implies \text{↓ probability to be an anomaly} \]

The Autoencoder won’t be able to properly reconstruct abnormal samples because they deviate so much from the other samples, they are generated by a different mechanism.
Scores

<table>
<thead>
<tr>
<th>Sample id</th>
<th>Rec_Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>313971</td>
<td>1020</td>
</tr>
<tr>
<td>72302</td>
<td>980</td>
</tr>
<tr>
<td>115924</td>
<td>965</td>
</tr>
<tr>
<td>94811</td>
<td>853</td>
</tr>
<tr>
<td>236924</td>
<td>744</td>
</tr>
<tr>
<td>310405</td>
<td>729</td>
</tr>
<tr>
<td>172925</td>
<td>721</td>
</tr>
<tr>
<td>172920</td>
<td>666</td>
</tr>
<tr>
<td>236938</td>
<td>656</td>
</tr>
<tr>
<td>11831</td>
<td>324</td>
</tr>
<tr>
<td>313982</td>
<td>298</td>
</tr>
<tr>
<td>69467</td>
<td>265</td>
</tr>
<tr>
<td>69472</td>
<td>228</td>
</tr>
<tr>
<td>313974</td>
<td>219</td>
</tr>
<tr>
<td>313969</td>
<td>214</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example
Example
Example

Input

Output
Example

Input

Output
Example

Input

Output

Anomaly!

High MSE
Software

Python
Main Programming Language

Spark
Fast and general engine for large-scale data processing

Nvidia
Parallel computing platform

TensorFlow
Open-source Machine Learning library from Google to build Deep Learning models
Our Own Application Programming Interface

Building our own Machine Learning API

- Directly connected to the production environment
- Easy to use for non-experts in machine learning in their own projects
- Always updated to the state of the art
Hardware: Deep Learning on a GPU machine

CPU
- Intel® Core™ i7-7700K processor

GPUs
- 2 x GeForce GTX 1080

RAM Memory
- 32 GB 2.667 MHz
Hardware: Deep Learning on a GPU machine (very soon)

CPU
2 x Intel Xeon Platinum 8168

GPUs
3 x V100

RAM Memory
512 GB 2.667 MHz
Hardware: Data Pre-processing on Spark

4 x Workers:
40 cores each
216 GB each

Master:
40 cores
216 GB
Thank you for your Attention!